Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 927: 172005, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38554969

ABSTRACT

Analysis of dissolved organic matter (DOM) composition and microbial characteristics is crucial for tracing the sources of rural black and odorous water bodies (BOWB). The aim of this study was to explore the DOM and microbial diversity and identify the primary environmental factors in BOWB from various pollution sources during different periods using EEMs-PARAFAC and Illumina sequencing. It was found that the physicochemical properties vary widely across different pollution types of BOWB, with higher overall content during the high-water period compared to the normal-water period. The types of dissolved organic matter in BOWB are Tyrosine proteins, Fulvic acid, Dissolved microbial metabolites, and Humic acid. During the normal-water period, DOM originates primarily from terrestrial sources in various water bodies. However, DOM affected by livestock and poultry waste and industrial effluents is influenced by both internal and external sources during periods of high water levels. In industrial waste-type BOWB, the biological sources of water are weak. Proteobacteria, Actinobacteria, Chloroflexi, Firmicutes were the dominant bacterial phyla. According to the redundancy analysis, pH (p = 0.047), Total nitrogen (TN) (p = 0.045), Organic carbon (OC) (p = 0.044), and Nickel (Ni) (p = 0.047) are the primary environmental factors influencing the composition of bacterial communities.


Subject(s)
Bacteria , Environmental Monitoring , Bacteria/classification , Water Microbiology , Microbiota , China , Odorants/analysis , Humic Substances/analysis , Water Pollutants, Chemical/analysis
2.
J Environ Manage ; 353: 120168, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38278111

ABSTRACT

Arsenic (As)-immobilizing iron (Fe)-manganese (Mn) minerals (AFMM) represent potential As sinks in As-enriched groundwater environments. The process and mechanisms governing As bio-leaching from AFMM through interaction with reducing bacteria, however, remain poorly delineated. This study examined the transformation and release of As from AFMM with varying Mn/Fe molar ratios (0:1, 1:5, 1:3, and 1:1) in the presence of As(V)-reducing bacteria specifically Shewanella putrefaciens CN32. Notably, strain CN32 significantly facilitated the bio-reduction of As(V), Fe(III), and Mn(IV) in AFMM. In systems with Mn/Fe molar ratios of 1:5, 1:3, and 1:1, As bio-reduction decreased by 28%, 34%, and 47%, respectively, compared to the system with a 0:1 ratio. This Mn-induced inhibition of Fe/As bio-reduction was linked to several concurrent factors: preferential Mn bio-reduction, reoxidation of resultant Fe(II)/As(III) due to Mn components, and As adsorption onto emergent Fe precipitates. Both the reductive dissolution of AFMM and the bio-reduction of As(V) predominantly controlled As bio-release. Structural equation models indicated that reducing bacteria destabilize natural As sinks more through As reduction than through Mn(II) release, Fe reduction, or Fe(II) release. Systems with Mn/Fe molar ratios of 1:5, 1:3, and 1:1 showed a decrease in As bio-release by 24%, 41%, and 59%, respectively, relative to the 0:1 system. The observed suppression of As bioleaching was ascribed to both the inhibition of As/Fe bio-reduction by Mn components and the immobilization of As by freshly generated Fe precipitates. These insights into the constraining effect of Mn on the biotransformation and bioleaching of As from AFMM are crucial for grasping the long-term stability of natural As sinks in groundwater, and enhance strategies for in-situ As stabilization in As-afflicted aquifers through Nature-Based Solutions.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Manganese/analysis , Arsenic/chemistry , Ferric Compounds/chemistry , Minerals/chemistry , Groundwater/chemistry , Bacteria , Ferrous Compounds , Oxidation-Reduction , Water Pollutants, Chemical/chemistry
3.
Molecules ; 28(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38138583

ABSTRACT

The development of an efficient catalyst with excellent performance using agricultural biomass waste as raw materials is highly desirable for practical water pollution control. Herein, nano-sized, metal-decorated biochar was successfully synthesized with in situ chemical deposition at room temperature. The optimized BC-Cu (1:4) composite exhibited excellent peroxymonosulfate (PMS) activation performance due to the enhanced non-radical pathway. The as-prepared BC-Cu (1:4) composite displays a superior 99.99% removal rate for ciprofloxacin degradation (initial concentration 20 mg·L-1) within 40 min. In addition, BC-Cu (1:4) has superior acid-base adaptability (3.98~11.95) and anti-anion interference ability. The trapping experiments and identification of reactive oxidative radicals confirmed the crucial role of enhanced singlet oxygen for ciprofloxacin degradation via a BC-Cu (1:4)/PMS system. This work provides a new idea for developing highly active, low-cost, non-radical catalysts for efficient antibiotic removal.


Subject(s)
Ciprofloxacin , Water Pollutants, Chemical , Copper , Water , Water Pollutants, Chemical/analysis , Peroxides
SELECTION OF CITATIONS
SEARCH DETAIL
...